Fetal Cardiology Kottler NE, Leopold GR, O'Boyle M, Pretorius D, Sirlin CB

Fetal Cardiology

- Cardiac anomalies are the most frequently overlooked group of abnormalities
- Congenital heart disease = 0.8% of all pregnancies
 - > 4% one sibling affected; 10% two siblings affected
 - ➢ 9% father affected
 - 12% mother affected
- Causes > 50% deaths from congenital disease

Fetal Cardiology

- Risk Factors for congenital heart disease:
 - Family history
 - Recurrence risk (hypoplastic left heart as high as 13.5%)
 - Nongestational DM
 - Maternal infection (rubella)
 - Lupus
 - Drugs (anticonvulsants, etoh, amphetamines, ocp, vit A, steroids, etc.)

Fetal Cardiology

- AIUM / ACR standards in the 2nd and 3rd trimesters include:
 - Four chamber view
 - Position of fetal heart in the thorax
- LVOT and RVOT not yet part of standards
- 4 chamber view alone: 33-63% sensitive
- With outflow tracts: 83-85% sensitive [2]

GOALS

- Review normal cardiac anatomy and its sonographic appearance (four chamber, LVOT, RVOT)
- Explore diagnostic pitfalls
- Review the appearance of more common structural cardiac defects

1. Heart fills one third of the chest

2. Apex points to the left (45 degree angle)

3. Size of right chambers approximates left chambers

MV and TV move on real time imaging
Ventricular septum symmetric

6. Portion of the atrial septum present (crus)

Left Ventricular Outflow Tract

- Identify: LV, RV, IV septum, aorta (normal caliber), +/-LA, +/- RA
- Medial wall of the ascending aorta merges with the top of the IV septum (most frequent location for VSD)
- Pathology: VSD, tetralogy of Fallot, transposition, truncus arteriosus

Right Ventricular Outflow Tract

RA

- Identify: branching of the main PA into right PA and ductus arteriosus (to desc Aorta), asc aorta in cross section, desc aorta to left of spine; verify PA crosses anterior to asc aorta
- Pathology: transposition, truncus arteriosus

Interventricular Septum

Left Ventricle

Right Ventricle

Aorta

Mitral Valve (closed)

Aortic Valve (open)

Interventricular Septum

Right Atrium

Right Ventricle

Main Pulmonary Artery

Right Pulmonary Artery

Ductus Arteriosus

Ascending Aorta

Tricuspid Valve

Pulmonic Valve (open)

Descending Aorta

Pitfalls: PseudoVSD

IV septum parallels US beam (echo dropout)

Changing Angle

- When the IV septum parallels the US beam, resultant echo drop out looks like VSD
- IV septum normally tapers near the AV valves
- Corrected by changing the angle of view

Pericardial effusion ???

NO!!! Normal amount fluid (< 2mm)

Pericardial Effusion???

NO !!!

The hypoechoic myocardium extends into the interventricular septum (arrow), allowing differentiation from a pericardial effusion

Echogenic foci: EFLV, EFRV

- Weak association with cardiac abnormalities
- Doubles the risk for Trisomy 21
- Can be confused with portions of the chordae tendinae (differentiate on real time imaging)

Pathology

- VSD
- Tetralogy of fallot
- Endocardial cushion defect
- Transposition of the great vessels
- Hypoplastic left heart
- Hypoplastic right heart
- Double outlet right ventricle
- Truncus arteriosus
- Ebstein anomaly
- Coarctation of the aorta

Ventricular Septal Defect (VSD)

- Most frequent cardiac defect (20-30%) [4]
- IV septum: inlet, trabecular, infundibular and membranous portions (muscular and membranous)
- Maldevelopment of muscular septum or endocardial cushion; improper resorption of the muscular ridge
- Left to right shunt

4 Chamber View

LVOT

4 Chamber View

4 Chamber

4 Chamber

Color (left to right shunt)

VSD video clips

click image to play video

- VSD, infundibular pulmonic stenosis, over-riding aorta, RV hypertrophy
- 5-10% of CHD [1]
- Frequently not visualized on four chamber view (aside from VSD)

- Associated with chromosome anomalies (12-50%) [1]
- Recurrence risk = 2.5% (1 sib), 8% (2 sibs) [4]

 Cause = unequal division of the conus into smaller RV portion and larger LV portion [4]

Courtesy of Dr Mark Skalansky

Caliber of aorta > PA

Tetralogy of Fallot video

click image to play video

Courtesy of Dr Alfred Albahamed

• 5% of CHD

- Recur risk = 3% (1 sib), 10% (2 sibs), 1% (dad), 14% (mom)
- Freq assoc with other anomalies; strong assoc with Trisomy 21
- Large defect at the crus of heart on four chamber view

- Several types depend on how AV valves attach. Most common is type III, complete AV canal and common AV valve
- Endocardial cushions fail to fuse; cause defect in both the atrial and ventricular septae (AV canal)

4 Chamber View

4 Chamber View

Courtesy of Dr Mark Skalansky
Endocardial Cushion Defect

Endocardial Cushion Defect

Endocardial Cushion Defect video

click image to play video

Transposition of Great Vessels

Children's Virtual Hospital

- D-type ("complete") =
 heart tube loops to the
 right... normal orientation
 of ventricles; but vessels
 malform (cyanosis)
- L-type ("congenitally corrected") = heart tube loops to the left...
 ventricular inversion, but normal vessel orientation (no cyanosis)

Transposition of the Great Vessels

- 4-6% of CHD
- Recurrence risk = 1.5% (1 sib), 5% (2 sibs)
- Association with excessive vitamin A
- Rarely associated with chromosome abnormalities [4]

Transposition Great Vessels

- VSD (30-50%)
- Aorta arises anterior and to the right of PA; great vessels parallel each other
- 5 year survival (surgery) 90%

Transposition Great Vessels

Courtesy of Dr Mark Skalansky

Transposition Great Vessels video

click image to play video (video starts slowly) Courtesy of Dr Alred Albafamed

Hypoplastic Left Heart

- 2-4% of CHD [3]
- Hypoplasia of the LV; MV / AV stenosis or atresia
- Assoc with coarctation of aorta (80%) when AV atretic
- Hypothesis: low blood flow to LV causes hypoplasia

Hypoplastic Left Heart

- Causes hypoperfusion of coronary arts; CHF from ischemia
- Cyanosis at birth if LA to RA shunt not adequate
- Associated with chromosomal anomalies = 16% (one half from Trisomy 18 alone) [4]

Hypoplastic Left Heart

4 Chamber View

- Underdevelopment of right sided heart structures
- Hypoplasia of the RV and PA; RV wall thick; hypoplastic or incompetent TV; PV atresia
- Relies on patent ductus arteriosus for blood supply to lungs (PGE1)
- Tx = surgical sytemic to pulmonary shunt (Blalock Taussig Shunt)

Double Outlet Right Ventricle

- 1% of CHD
- Recurrence risks not defined
- Both PA and at least half of the aorta originate from RV
- Karyotype abnormalities = 5%; including Trisomy 13,18^[4]

Double Outlet Right Ventricle

- Associated with VSD, ascending aortic stenosis, pulmonic stenosis, AV abnormalities
- Complex embryologic changes involving bulbus cordis (RV), conus cordis (septum), and truncus arteriosus (great vessels)

Double Outlet Right Ventricle

Both the PA and aorta (more than 50%) arise from the RV

Double Outlet Right Ventricle video

click image to play video

• <1% CHD

 Single arterial vessel "truncus" arises from the heart and supplies the coronary arteries, pulmonary and systemic circulations

Recurrence risk = 1% (1 sib), 3% (2 sibs) [4]

- Other associated pathology: VSD, abnormal trucal valve, ASD...
- 20% overall mortality (surg < 6mo to avoid pulmonary HTN)
- Differentiate from tetralogy of Fallot = no RVOT; look for origin of PAs from truncus

Four Types (Van Praagh Classification)

- 1. Main PA arises from truncal root and divides
- 2. Both PAs arise from the truncal root separately
- 3. Left PA supplied by collaterals from aortic arch
- 4. Aortic arch interrupted; desc aorta supplied by ductus (10-15%)

- <1% CHD
- Recurrence risk = 1% (1 sib), 3% (2 sibs)
- Apical displacement of TV; small RV; RA grossly dilated because TV incompetent

- Assoc with ASD, WPW syndrome (30%), RV outflow obstruction (PS); CHF in utero from TR [1]
- Surgery to replace TV [1]; arrhythmia is frequent after correction (dilated RA)

4 Chamber View

Courtesy of Dr Mark Skalansky

click image to play video

Courtesy of Dr Alfred Albafamed

- <1% CHD
- Recurrence risk = 2% (1 sib), 6% (2 sibs)
- When ductus closes, tissue at insertion on proximal desc aorta constricts (post ductal coarctation)
- 6th arch forms ductus arteriosus; 4th arch forms transverse aorta

- Narrowing just distal to takeoff of left subclavian artery
- Hypoplasia of 4th arch
- Visualization of arch is insensitive
- Large RV and PA relative to LV and Aorta

- Flow across TV / MV > 2 / 1 (normal < 1.8 / 1)
- Assoc w/ other cardiac defects = bicuspid aortic valve, VSD, ASD...
- 10% association with chromosomal anomalies (especially Turner's)

Coarctation of Aorta video

click image to play video

References

- Diagnostic Ultrasound of Fetal Anomalies: Text and Atlas, Nyberg DA, Mahony BS, Pretorius DH, 1990, Year Bood Medical Publisher, Inc.
- 2. Sonography of the Normal Fetal Heart: A Practical Approach, Frates MC, AJR 1999; 173: 1363-70.
- Prenatal Diagnosis of Congenital Cardiac Anomalies: A Practical Approach Using Two Basic Views, Barboza JM, Dajani NK, Glenn LG, Angtuaco TI, Radiographics 2002; 22: 1125-1138.
- Structural Fetal Abnormalities: The Total Picture, Rodger C Sanders et al, 2nd edition, 2002 Mosby, Inc.

References

- Fetal Echocardiography: An Atlas, Kathryn L Reed, Caroline F anderson, Lewis Shender, 1988 Alan R Liss, Inc, NY, NY.
- Color Atlas of Fetal Cardiology, Lindsey Allan, Gurleen Sharland, Andrew Cook, 1994 Mosby – Wolfe Publishing.
- Significance of Fetal Intracardiac Echogenic Foci in Relation to Trisomy 21: A prospective Sonographic Study of High – Risk Pregnant Women, Manning JE, Ragavendra N, Sayre J, Laifer-Narin SL, Melany ML, Grant EG, Crandall BF, AJR 1998; 170: 1083-4.

THANK YOU !

